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XI On the Series of STuRM and LiouviLLg, as Derived from a Pair of Funda-
mental Integral Equations instead of a Differential Equation.

By A. C. Dixon, F.R.S., Professor of Mathematics, Queen's University, Belfast.
Received April 6,—Read May 11, 1911.

Introduction.

THE series of LrouviLLe and STurRM are generally treated by means of approximate
solutions of the fundamental differential equation, these approximations being valid
when certain functions involved in the differential equation have differential co-
efficients. The object of the present paper is to relax this restriction, and for this
purpose integral equations are used in place of a differential equation, and an
approximation is investigated (§§4-11) depending on a function which is constant
throughout each of a system of sub-intervals.

In §§ 15-18 the results are applied, by help of HoBsoN'’s general convergence
theorem, to that one of the Liouville series which is usually valid at the two ends of
the fundamental interval, and in §§ 19-22 to the more general series discussed by me
in ‘ Proc. L.M.S., ser. 2, vol. 3, pp. 83-103.

A theorem analogous to that of VALLEE-PoussiN on the series of squares of the
Fourier constants is then proved (§§ 23-25) by a method which I believe to be new.

1. The differential equation of L1ouvILLE and STurM is
Ogic@fg) gr=DV=0. . . . . . .. .(@)

and is equivalent to the pair of integral equations
U= [V (-g)de, V=j~1;Uolac. R O

The values of U, V at the lower limit in these 1ntegrals are the two arbitrary
constants of the complete primitive.

In the theory of the equation (1) the known functions %, g and the unknown
function V are generally supposed to have differential coefficients ; no such assumption
will be made in the present treatment of the equations (2). All integrals will be
taken according to LEprsGuEr. Also g, & are supposed positive and [ real, and it is
assumed that the integrals of ¢, k™", |/] exist.
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412 PROF. A. C. DIXON ON STURM-LIOUVILLE HARMONIC  EXPANSIONS.

2. The equations (2) are somewhat simplified if we take j(g/k)"z dz as independent

variable, and with a change of notation they become

p=[opde, W=\ pde . (3)

Here o, p are known functions of x, p being positive, and it is assumed that the
. 1 . . . . . .
integrals of ||, p, = exist; X is a parameter independent of », and owr first object
p

will be to find an approximate solution when |\| is great, but A not necessarily real.

3. Values of ¢, ® satisfying (3) and such that, when x =, ¢ =0, and ® =1 will
be denoted by ¢ (v, @), @ (x,a); if, when w=«¢, ¢ =1, aud ® =0 they will be
denoted by  (x, a), ¥ (x, «). If ¢ =A, ® =B, when x = «a, then the equations (3)
become

p=A+| pbde, =B+ [ (r=N/p) ¢ o,

and have, according to the known theory of integral equations, a unique solution
which must be

¢ = Ay (2, @)+ B (i, «),

O = AV (2, )+ BP (z, a).
Thus, 1t follows that

¢ (x,0) = ¢ (a,0)
b)) = (a, b) (2, a) + ¥ (a, D) ¢

(, @)+ (a, ) ¢ (, @),
( (x, a),
2,b) = ¢ (a0, ) ¥ (2, @)+ ® (a, )  (z, @),
¥ (x,0) = (a0, 0) ¥ ( (,
Other important relations are
¢ (2,0) ¢ (a,¢)= ¢ (2, ¢) ¢ (a0, 0) = ¢ (z,a) ¢ (b, ),
v (2, D) (a, ) = (2, )y (@, D) = ¢ (0, 0) ¥ (e, D),

4. Tf a second pair of equations of the type (8) is taken where p/, o/, N, ¢/, @ take
the places of p, o, A, ¢, P, we have

W (2
@ (

2, )+ (a, 0) O (x, a).

and so on.

(/)(.[),=j{pq)(r’/—l'(oj")\l/p,)(/)(/),}CZ;U. Coe (1)

by the formula for integration by parts, and similarly

(/),(D = j{pl(l)(l)l—i*(o—-A/p) (/)(/)l} de, . . . . .. ‘ . (4.,)
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so that :
q&q)’-—(ﬁ’(.p = 5{(;)-——-,)') OP’ - (o"——cr+7\//')—7\’/p’) (j)(/;’} doe. . . . . (5)

These integrals are indefinite, each carrying with it an additive constant to be
determined by trial of some particular value of @. The formula (5) includes a great
variety of particular results of which many are well known in the theory of the
equation (1).

For instance, take ¢, ¢ to be (/;(n a), ¢ (x,0) so that p=p, A=)\, ¢ =0¢; by
putting « = @, b in turn we have

¢ (b, a) = —¢(a,D),
Y (b, ) = @ (a0, D), Y (b, ) = =¥ (a, D),

and similarly
and

¥ (@) (1, @)= (o, 0) W (v, 1) = 1.

Again, taking ¢, ¢’ to be ¢ (w, a), ¢ (2, 0), we have

b
(0, @)+ (a,0) = | {(o—p') D, @) &' (2, D) + (o' o+ Np=N][p) (e, @) ¢/ (2, D)} dz (6)
which is the formula to be used in the approximation. The right side of (6) is the
error committed when ¢ (b, a) is taken as equal to ¢ (b, @) ; in it the term depending
on ¢’ —o turns out to be unimportant, while when A" = X the rest is numerically less
than the square root of

2

v b
(" (=)t o | \cp (2, ) O (2, D)= 2, () o ()] v,
Ju v pp

It will be our object to choose p’ so that | p *du is small, while at the same
) o

time ¢’ can be expressed in terms of known functlons and, in fact, the interval (a, b)
will be divided into small sub-intervals in each of which p’ will be constant. Thus we
need the following lemma :—

If f () is a function limited and summable in (a, b) this interval can be so divided
into a findte number of sub-intervals, and a function ¢ (x) constant in each sub-

b
wnterval can be so chosen that j (fie—px) da 1s arbitrarly small.

5. To prove the lemma, let U, L be the boundaries of f(x); take n—1 arithmetic
means d;, s, ..., t,—1 between them and let @y = I, @, = U. Let the values in («, b)
for which a,-, < S (x) =a, form the set l,(r=0,1,2,...,n). Enclose /, in a set of
intervals A,, not overlapping, and C(/,) in a set 1‘7., not overlapping, so that A,, T\,
have a common part < e Let the intervals of A, in descending order of length be
Oy O, ..., and take an integer p such that

Y .
2 Sw> A—e(r=0,1,2, ..., 1)

M o=1
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Let ., be the part of J,,, which is also in T',.
Put ,
¢ (x) =a in &(m=1,2, ..., p),

=a in &, (m=1,2, .., p),
except where the value @, has been already assigned
=..=a in &,.(m=1,2 ..., p),

except at such points as belong to d,u, s vy o1y (0 = 1, ..., p) where the value
has been already assigned, and, lastly,

= L. in the rest of the domain.
Then | f(x)—¢ (x)] < (U=L)/n in ali parts of d,,, that are not in
r=0,1,...,0n; m=1,2,..,p),
that is in intervals I whose sum is

14

"
— \J \‘ \]
= 2 2 (érm - 61'm.>~

r=0m=1
Now
”° P " ‘ )
220> 2 A—mtl)e> (b—a)=(n+1)e
r=0m=1 9 =0
n ] )
S 2 < (ntl)e
=0 =1

and, therefore,

E>0—a)-2(n+1)e

Hence the points where | f(x)—¢ (x)| > (U=L)/n form a set whose measure
< 2(n+1)e and

14 .
[ {F (@)= (@)1 de < (h=0) (U=Lp*+(U=L)*2 (1)

In this expression we may suppose ¢ = 1"~ and make n as great as we wish so that
the whole is arbitrarily small.

The most advantageous value for ¢ () in each interval is the average of f(x) over
the interval, for when ¢ is to be a constant in the interval (xy, z;) the least value of

Ly

(fx—c) dw

R

is given by putting
¢ = ‘ Flx) dw =+ (wy—a).

Jay

6. The proof that has been given indicates a particular method of subdivision, say
the method A, but any other method, say B, may also be used. To prove this, let
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a1, o, ... be the points of a subdivision A;, according to A, for which the value of the
integral 18 <e.

Take a subdivision By, according to B, in which the sum of the intervals containing
oy Oy .ovy oy 18 < e: then in the other intervals of B, the value of ¢z is constant
whether in A; or B, and the integral can therefore be made < e, while for the
intervals containing a, ..., a, the value of the integral is not more than (U—L) e
Hence for the subdivision B, the integral can be made less than

e+ (U - L)2 €,
that is, arbitrarily small.
Hence the subdivisions of («, b)) may be taken all equal, or according to any other
method, provided that the greatest of them tends to zero.
Moreover, the square of

14
{a | fo—ga|da

J

is less than

(=) [ (Somgaf d

and, therefore,

C | fr—¢x|da

is also made arbitrarily small.
If LL is positive, then
jl)

and is also arbitrarily small. We may, in fact, say that

“: | fo— g | dac+ r |L_L dx

a X gbm

1 1

de < L[
— ./c<—L—2L|ﬁz,—¢x]dm,

is arbitrarily small.
This is the property that will be immediately useful. It may be extended to an
unlimited function fx when

1
Jr

exist. For take a limited function jfiz which is equal to fir when N = (fx)’= 1/N
N being a certain positive number, and is 1 for other values of z. N may be so
chosen that

[z | for | dex and V dx

v

11

Then the function ¢x, constant in each of a system of sub-intervals, can be so
determined that A

b b
[ | fo—fye|dx and [ d both < te.

j:{lj;ﬂ?"gbflil'f“ 7'1;—59.6”(1% < le
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416 PROF. A. C. DIXON ON STURM-LIOUVILLE HARMONIC EXPANSIONS.
Then, by help of the inequality,

la—b|+ | b—c|z=|a—

it follows that

rd

\ I[]/,__(/w l---—-——-“d.’(ﬂ<€.

In the same way, if
b
| ()t e

exists, ¢ may be so determined that

V(ﬂ(’"‘/’%y dr < e,

by help of the inequality
: (a=bY+(b—c)P=%(a—c)

7. Thus, for the purpose of approximation, we are to divide the domain of 2 into
sub-intervals, all tending to zero, and in each sub-interval put for p a suitable mean
among its values over the sub-interval, which may be conveniently called a local
average of p and denoted by ».  Suppose, then, that

w(w, a)=1u= rq'U de, U(r,a)=U=1- \ Ry

v (e, a) =v=1+ (g;O'V de, V(v,a)=V= ( A g

a )

In each sub-interval u, », U, V are solutions of the equation

dy

— N\
T Y,

and are, therefore, of the form
A exp i/ —N+Bexp (—z /=)

A, B are constants through each sub-interval, but are changed at the passage from
one to another. It is of great importance to ascertain whether they can increase or
decrease indefinitely, and we shall now prove that they cannot if the total fluctuation
of log = is uniformly limited,* that is, if the total fluctuation is always less than a
fixed finite quantity at all stages of subdivision of the domain.

8. At every internal point of a sub-interval v, V have differential coefficients, and
at the points of division their derivatives, upper and lower, on the same side

“are equal.

* This does not imply that the total fluctuation of log p must be limited. For instance, p may be 1 at
all rational points and 2 at irrational points, then » = 2 everywhere.
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Since

z

AV
— =7V = —r[ = du,
dm Ja T

and the integral is a continuous function of wx, it follows that the discontinuity in

log ;Z—Z-; is equal to that in log ». Also v has no discontinuity, being equal to

14 j 'V da,

Leb the imaginary quantities conjugate to A, v, ... be denoted by A, %, ..., and let

A A

w = v, v/ =\ = a+183, a being positive. Also write D for dfdx. Then in each sub-
interval _
(D*—44a”) (D*+48°) w = 0.
Also,
(D*+4B%) w = vD*5+5D*+2D0oDi + 4%,
= 2 (a’+6°) vo+2De D7,
D (D*+48) w = 4o {(u+¢/8) D5+ (e —1B8) 5D}

OF

Hence, when « = a, the value of (D*+48%) w is 2 («’+8%), or 2|x|, and that of its
derivative is 0. At any discontinuity when » is changed to #/ (both are real) the
derivative is multiplied by +//r and (D*+46%) w itself consists of two positive terms of
which the first is unchanged while the second is multiplied by (+//r)>. Thus the effect
on (D*+44%) w is to multiply it by a quantity between 1 and (+//r)2

Now, if in any interval a function y satisfies the differential equation D% = 4a%,
and if at the beginning ot that interval y lies between A cosh 2a (z—a) and
B cosh 2a (x—a), while Dy lies between 2Aa« sinh 2a (z—a) and 2Ba sinh 2« (x—a)
where A, B, x—a are real and positive, then these same statements must hold
good throughout the interval. For suppose B > A, then B cosh 2a (x—a)—y and
y—A cosh 2a (x—a) are both functions satisfying the equation

A

D% = 4a%,

and at the beginning of' the interval their values and derivatives are all positive ; it
tollows from the differential equation that the values and derivatives will increase,
and therefore be positive throughout the interval.

In the first sub-interval (D?+44%) w must be 2|\ |cosh 2a (x—a) and its derivative
4o.|\| sinh 2a (x—a). At entrance to any later sub-interval of the domain
(@,b) (@ < b) this function and its derivative are multiplied by quantities of which
we know that each lies between 1 and +* where = is the ratio of increase in ». Thus
throughout all the sub-intervals

OF

(D?+48°) w = 2P|X|cosh 20 (z—a), (D*+48°D)w = 2Qa|\|sinh 2a (x—a)

where P, Q are quantities lying between Ili+* and Il if we use II, to denote the
VOL. CCXIL.—A. 3 u
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product of all the factors > 1 and 1I, that of all the factors < 1 among the
quantities 7. ‘ ‘ '
Tf log # is of uniformly limited total fluctuation then I7* and Il are limited, and
50, therefore, are P, Q. ‘
9. Now
2]+ | Do

P = (a’+B) v+ DoDi,
= % (D2+ 4/82) w,
= P|\]|cosh 2a (z—«),

and hence |Av*| and | Do|?* are severally less than this.

Also, the real part of v/ —aD7 is

(a4 B) VDG + (e —B) DD} = é—lo—; D (D% 45%) e,

= 4+Q[A[sinh 2a (x—c). . . . . . . (7)
Hence |v| and [Dv + /2| are both

< {P cosh Za (,”1:——0’,) } 1/2’
but
> 1Q sinh 2a (x—a) {P cosh 2a (x—a)}

Now P, Q cannot increase or decrease indefinitely, and therefore, it we do not
allow a to tend to zero, we have that [v| and |Dv <+ v/A| bear to exp a (w—a) ratios
which are limited in both directions ; and this is true, both when the sub-intervals are
increased in number and also when |A| is increased indefinitely.

In the same way it may be seen that the ratios of |uv/x| and [Du] to expa (x—a)
are limited in both directions.

When « = 0 the argument shows that [1v/A], |Dul, |o], and |Do + /x| are
limited above, but not below, and, in fact, we know that each of the four is capable
of vanishing. '

10. The condition that log s should be of uniformly limited total fluctuation is
necessary, for if it is not fulfilled P may be indefinitely great or small, and it is
conceivable that uv/x and Du, for instance, should become very small together, in
the same way that a pendulum would be practically stopped if its velocity were
suddenly reduced in a constant ratio at every passage through the lowest position
and increased in the same ratio at every time of reaching one of the extreme
positions, when, of course, the increase would be of no effect.

(1. Hence if in (5) we take the limits to be «, b and put p’ ="r, a local average
of p, =0, N =\, ¢ =¢(r,a), ¢ =ulx,b), we have

¢ (b, a)+u(a,b) = ¢ (b, a)—u(b,a)

= r: { (p—1) D (2, ) U (2, b) +2 < J> ¢ (r, @) w (o, b)—ag¢ (x, «)u (i, b)}r .

1
po
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Changing ¢ into v, or « into v, or both, we have similarly
—® (b, a) v (a,b) = - (b, )+ U (b, @)

= {(,,_o»-) ® (i, @) V (2, b)) <1 1) o (2, @) 0 (2, B)— s (2, 1) v (i, b)} d,

;T
¥ (b, a)—v (b, )
= r {(p-—?") ¥ (, @) U (2, D)+ <;1) - }) (e, ) w (e, b) =y (2, @) u (m,'b)} dx,

~ (b, )+ V (b, )

= [: {(p—-’l") W (, @) V (2, )+ <;)1~ - %) (2 a) v (e, b)—oy (2, @) v (z, b)} da.

These are expressions for the errors committed when u, », U, V are taken as the
values of ¢, \, @, V.
Let u denote the upper boundary of the ratios of

I\/X {‘f’ (.731, '750)_'%{' (.’Lﬁ, '7"9)} I ’ { % (.’)01, xl))_U (.761, x‘)) l ’
[\b ('Th 'TO)—/” (.%‘1, 960) i H g A_l/z {\I/ (xh wO)_v (961, 70)} *
to exp o (2 —,) for values of o, 7, such that

A=y <=0

Let the symbol // denote equality in order of magnifude so that P//Q means that
the ratios P/Q, Q/P are both limited.
Then in the expressions for the four errors, since b =2 = a,

N (e, D), v (x,0), Uz, b), AV (x,0) are all at most [/ exp a(b—2x),
while
N2 (x,a), (z,a), ®(r,a), NV (r,a) areall at most [/ (1+x)expa (z—a).

Hence such a product as ® (x, @) U (z,0) or A (x, @) (x,b) is [/ (1 +u) expu (b—a)

at most, and
/

L A IR R

is at most /[ = (1 +p) exp o (b—a) where

m:ﬁ{lp——a'l%—‘l }l}d%

p
Z] P
Also J |o| da is supposed to be finite, and therefore
b .
j o¢p (2, @) u (z,0) dz is at most [/ —E—:\;’i expa (b—a)

3 H 2
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420 PROF. A. C. DIXON ON STURM-LIOUVILLE HARMONIC EXPANSIONS,
Thus the error in \"?¢ (b, a) is at most [/ -
(L4u) {m X[+ N[ 77} exp a (b-a),
and the same may be proved for the errors in
w (b, a), @ (b, a), NV (b, a) ;
also we may put @, x, for b, a. Hence, at most

wff (L) {m [ N[724 X[ 72,

and = may be as small as we please. If we make = [/ A7 we have

wll INT,

so that in each of the four cases the ervor is of this order relatively to the true value.
12. Since u, v, U, V do not depend on o, the error produced by neglecting or

altering o is also of the order of A™* in comparison with the true value.
From (5) by putting p = p/, ¢ = o/, and making X" approach X, we can deduce such

results as
a _(1 ) e Dl
L p(b,a) = j Cp@a)g(eb) e ¥ (b0 = - j ~ ) B da, - (8)

thus proving that ¢, v, ®, ¥, have everywhere finite differential coefficients with
respect to the complex variable A. They are therefore holomorphic functions of A all
over the plane.

13. Tt is sometimes useful to know that ® and + cannot tend to destroy each
other in such an expression as ®+ kv, where £ is positive.

To see this, begin at the other end of the interval (@,). The argument of §§8, 9
proves that the real part of V= (0, b) D (2, b) is —% |\ Qusinh 2a (b—2) where Q,
is positive and limited both ways. In this put « = a, and subtract from a multiple
of the result of putting b for 2 in (7).

Since v (a, b) = U (b,a) and V (a,b) = =V (b, a) the real part ot

VLU D, a)+kv (b, a)} V (b, a)
is thus found to be -
1] {& + k—Q} sinh 2a (b—a),
To ™
where 7, 7, are the values of 7 at a, b respectively.

Since k, Q, Qu, 7, m are positive, and Q, Qu, 7o, 71 are limited in both directions, the
vatio of U (b,a)+kv (b,a) to exp a (b—a) is also limited in both directions. Combining
this with the results of §11 we have the following theorem :—7he values of

£ (D, @), ¥ (b, @), ®(b,a), ¥(b, a) VN and also ® (b, a)+ky (b, a) where k is a
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positive constant, are all of the same order of magnitude as exp a (b—a), and cannot
be of lower order unless o tends to zero.

14. The values of w (b, a), U (b, @) ... can be written down as follows :—

Let the successive intervals into which bh—a is divided be denoted by 6., 6,, ..., 6,
and the values of » in those intervals respectively by =, 7, ..., 7, also let X = =/~

Then

1 » (617'1 :*“ 62""2) (627'2+ 637‘3) cee (Gn-1’7'n—1 + Gn’)”n)

u (b, a) = 57 expl(ab+ed:+...+eb,)

€1 . €373 .. €11 p—1

where e, e, ..., ¢, are all +1 and X vefers to the 2" ways of taking them. The
product in the numerator of the fractional factor contains n—1 binomial factors.

U (b, Ct) — “._1“ 2: (619"1 + (:’27"2) e (ﬁ‘n-—l'rn—-] + (:‘nTn) eXP l (6191 +€292_*_ o e,ﬂ,,),

A €1y oo €417

v (b, (t) = '}- > (61/)"1+ 627’12) - (En-—l'rn—-l + En’)'n) exp l ((‘191‘{‘6262*!‘ R (5‘”6”), :

(933 3
2 €l oo 61"y

V (Z), Ct) —_ _é > (61')'~1+€27'2) cen (&;—1’)%—-14’6::’}4,1) exp 1(6191 + 6292_'_ . +€n6n)-

2” €ty ..o €1y

Tt may, in fact, be verified that

9

(lu ',,U, d[j — Z“

do, ~ " ’

"
a6, v,

so that u, U satisfy the differential equations assigned; also, when 6, =0 the
expressions reduce to the corresponding ones for #-—1 intervals, and therefore u, U
are continuous throughout as functions of b ; lastly, at the beginning of the second
interval '

U= ?%sinh 16,, U = cosh 76,.

This completes the verification for u, U, and V, » may be treated similarly.

The approximations generally used in the treatment of the equation (1) might be
derived from these by neglecting all the terms except those in which ¢, = e, = ... = ¢,
that is, the terms which contain one or more of the differences 1 —y, 175—14, ... as
factors, and in the two terms which are left putting 2v/77ms1 for 7m+7ms1.  Thus
u (b, @), for instance, would reduce to

V1, sinh 1 (b—a).

This simplified form is clearly not admissible unless all the differences 7, —, 15—, ...
are small.
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15. Now suppose p to be limited both ways, and let F (¢, z, R) denote

Ptj(R) ¥ (1,0) N,

where p, means the value of the function p of the argument ¢, and the path of

integration in the A-plane indicated by (R) is a circle of radius R with centre at the

origin, R being such that this path does not pass through a point where ¥ (1 0) = 0.
pF (¢, @, R) is a symmetric function of 7, x for .

pl (8, 2, R)—p,F (2, ¢, R) = ‘
J(r)

{\I,(L O)}hl {\/’ (’,Z;’ O) v (t’ l)*w(t: O)\P(%: ])} ()

= [ ¢ (z,t) dx = 0,
< (R)
since ¢ (x, t) 1s a holomorphic function of A everywhere (§ 12). .
It will now be proved that F (¢ 2, R) satisfies the conditions of HoBsox’s
convergence theorem (* Proc. L.M.S.,” ser. 2, vol. 6, pp. 350-1), that is—

(1) Its absolute value does not exceed a certain quantity F for all values of #, x
such that ¢t ~ 2= u and for all values of R.

(2) j (t, z, R) dit exists for all values of @, b such that 0 =a < b =1 and for each

value of 2 in the interval (0, 1) which does not lie between @—gu and b+u; this
integral, moreover, is less than a positive number A, independent of «, b, .
(3) A > 0 when R = oo.

16. A change in the value of R does not affect F (¢, #, R) unless it changes the
number of zeros of ¥ (1, 0) enclosed by the circle : hence we may suppose the circle to
cross the real axis on the positive side at a point T, where v (1, 0) is zero. Thus, at
the point T, V (1, 0), and therefore also ¥ (1, 0), o] 2+ | Do*f|\|
cannot tend to zero.

Again (§12)

d ("1
l?x\I’( 0) = —j”—)x/r(m,())\/,(m, ODde, . . . . . . (8)
which is limited when « is limited,* whatever the value of 8. A distance // v/X can
therefore be assigned such that within that distance of T [¥ (1, 0) = +/x| does not
approach zero, but exceeds a certain fixed quantity independent of R. Beyond that
distance from T on the path it has been proved already (§ 11) that ¥ (1, 0) //\"? exp a,
so that this 1s now proved for the whole path.

The numerator y»(x, 0) (¢, 1) (¢ > x) is /[ exp az. exp a (1—t), so that the subject
of integration in F (¢, z, R) is

[N expa(x—t), thatis, A" exp(—au)at most.

* We still take V=X = a+¢3; thus o is limited for points within a distance // VA (or JR) of T.
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Also A7 dX [ de, except where a is near its maximum, and in that part of the path
the factor exp (—au) is so small that the contribution to the integral is negligible.

Hence F (¢, z, R) is at most // ’ exp (—au) de, that is, 1
Jo i

This is the first of HoBsoN’s conditions.

Again

~b I/

‘, lr \ L, 0 . ]
[[F (6 1) de = Lmi\%%fa)j“’ (1, 1) =¥ (b, 1)} i+

Z‘/’ (w’
ad (A ¥

In the first term of this expression the first term of the subject of integration
contains the factor
Y (i, 0) W (a, 1) = ¥ (1, 0),

which is of the order of expa(z—a), that is, at most exp (—au) when we take
x < a—p Also X7 d\[[da as before and A7 [[R™".  Hence the contribution of

. . 1 . .
this term is // T at most, and the same is true of the second part of the first term.

M
In the other term the integral of || is finite, and the integration with respect to ¢

is over a finite range, so that these two elements do not affect the order of magnitude :
the factor v (x, 0)y (¢, 1) =+ AW (1, 0) is of the order of A" exp a (x—¢), that is, R
at most, even when u = 0: the length of path in the A-plane is 2xR. Hence the
contribution of this term is [/ R™"* independently of u if x =a.

On account of the symmetry between x and ¢, like results can be deduced if
x> b+ u. .

Thus the second and third of HosoN’s conditions are fulfilled.

17. Again, so long as @ =a the value of v (x, 0) ¥ (a, 1) + ¥ (1, 0) is limited, and
so is that of v (x, 0) ¥ (b, 1) + ¥ (1,0). Hence the first term on the right in (9) is

limited, the integral of (—?’ being 27. The second term has been found to tend to
zero when R 1s increased, and therefore

~

b
F(t, x, R) dt

o/

is limited if x =a <, or similarly if =0 > a. When a < <l we may write

4 oL ch
=1l
a Jx

o Y

b
so that [ F(t, x, R) dt is the sum of two terms, each limited; and is itself limited for

o

all values of @, b, , R. This covers one of Hossox’s further conditions (§4 of his
paper, p. 361).
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It is not clear that the two integrals

j““ F (1,2, R)dr

r

tend to definite limits when R - oo, but thewr difference does so, and, in fact, 1if

a<x <b,

~h

|

b *
of the same

F (e, R)dt = | +

= [l IR (0 IR
B jm) [X‘I/(].,O) (W (@, 0) =¥ (, 0)} + Y (1,0) {¥ (2, 1)=¥ (b, 1)}} N
o@D 0 g e W@ 0w )
+LL“’>\ ¥ (1,0) dkd“_LJ(R))\ ¥ (1,0) L.b\dt. - (10)

All the parts of this expression tend to zero when R - oo except
’ — (e, 1) W (2, 0) + W (i, 1) (,0)
Jm AV (1,0)

= ——j oA = —2um.
® A

dX,

which

18.°Tt is now possible to prove that ¢f f(z) is continuous at x and of limated total
fluctuation i a neighbourhood of x then
. . 1
) = — Lim — | f(¢)F(t, e, R)dt. . . . . . . (11
f@) = = Lim 2= | S(OF (1,2, ) (11)

For (1) this holds when f () has a constant value (§ 17);

(2) The contribution to the integral from values of ¢ not lying between @+ u may
be ignored, the values x+u lying within the neighbourhood where f(x) is of limited
total fluctuation (FHoBsoN’s convergence theorem) ;

(3) By the second mean-value theorem, if' fi(x) is monotone,

v

" LAO=A@) F R i = o)Al [ @ R)

LAy

v T

where 0 =u, < u In the last expression the second factor is finite (§ 17), while the
first can be made as small as we please by taking u small enough, if fi is supposed
continuous. The same holds for the integral from x—pu to a.

Thus if f(x) is of limited total fluctuation between 2+ u and is, in fact, the sum of
two functions fi, f> which are monotone between those limits, and continuous at x,

— 2w f (@) = f(x) x RLlfi J:F (¢, @, R)dt

=Lim [ [fOF@awyare | [ "o [ [0 ] e fe) Bl R)
. ’L‘(L -z *;,-I—p. ] ’

B {Jo + jx”u + Jx + [Jvﬂt} {ﬁx“,f:&t 1r F‘ <tj “ _R‘> dt"l

o
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where the last eight integrals all tend to zero when R is increased without limit, and,
therefore,

j'(w),—.:_-;j'—Lim (lf(t)F(t,w,R)bdt e oo (1)

2tr R>w Jo
which was to be proved.

From this result one of the expansions of Sturm and Lrouvinie can be deduced by
considering the singularities of the subject of integration in ¥ (¢, «, R), that is, the
values of X for which ¥ (1,0) = 0.

When ¥(1,0) =0 we have v, (x,0) and +(x,1) the same but for a constant
factor, since

O (1,00 (2,0) =¥ (1,0) ¢ (2, 0) = (2, 1). . . . . . (12)

Also (§ 12),
a ¥ (1,0) = — r ‘l‘\p(m 0) v (2, 1) da.
N o Jop , ' ’

Hence, the residue of F (¢, 2, R) is

1 (M1,
~ Ly (@, 0) 9 (1,0) = | L iy (0012
Pt bp
and we have
1 11 ;
F@) =200 [ (o,0) S e+ [ L g @oprae .. (19)
0 P JO P
the summation veferring to the infinite series of values of X for which ¥ (1,0) = 0,
taken in ascending order of magnitude; thus f(x) is expanded in «a series of
Junctions ¢ satisfying (3) and such that ® vanishes at each of the extreme values 0, 1.
In order to investigate the validity of the expansion when 2 = 1 we need to discuss

fF(t, 1, R)dt

which

®) a

AV (1, 0) @ A ¥ (1,0)

Here the only term of importance is the second part of the first integral, which has
the value —2ir.  From this it follows, in the same way, that the expansion holds
good at the upper limit, and a like result can be proved when x = 0; in each case it
is supposed that f(z) is continuous and of limited total fluctuation in the
neighbourhood.

The course of the proof, moreover, shows that the series is uniformly convergent so
long as @ lies within an interval which is contained within another interval in which
f(x) is continuous and of limited total fluctuation.

It has been supposed that p is limited both ways. When this is not so, but the
integrals of p and /—f exist, the argument still applies if we detach the factor L from

- Pt
VOL. COXI.—A. 31
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F(t,2,R) and group it with d¢ in the integrations, that is, if we think of ‘
o /)

as the variable of integration in such expressions as

~

meWﬁmtmlpm%mm

19. The same method can be applied when F (¢, #, R) has the more general value

Li. 9’—(?—?@ dX
pr ) Q ’

where

w(t,x) = Kyr(x, 0)y(t, 1)+ Hep (e, 0)y (¢, 1) =G (e, 0) (2, 1) —Egp (2, 0) (¢, 1)—TLigp (e, 2),

Q= K¥(1,0)+H® (1,0)+ Gy (1,0)+Egp (1, 0)—2L,

E, G, H, K, L are real constants, with the one proviso that when K is 0, GH is
positive or zero, so that the terms in @ involving G, H cannot tend to destroy each
other (§13). € cannot vanish except for real values of A if GH—EK—L? is zero or

positive,* a condition which includes the proviso made.
Thus at stall follows that when 0 < ax < 1

Sl@) = = Lim = £ () F (2, R) l

R-> = 2 Jo

1 1
:ﬂiﬂm@WWHm@mm.....(m

~0Pt .,Op

the summation referring to all the values of X for which
Q=0, . . . . . . . . . .. (19

these values being taken in ascending order of magnatude.

Sufficient conditions for the validity of this expansion are those already stated,
namely, that f(x) should be continuous at x and of limited total fluctuation within
some nexghbourhood containing x as an wnternal point.

The restrictions placed on the functions o, p in the fundamental equations (3) are
that—

(1) p shall be positive ;
(i) The integrals of |a|, p, L shaidl exist ;
P

(iii) A local average of p shall have a logarithm of wniformly limated total
Auctuation for some method of division into sub-intervals of the fundamental domain

* For this and other results see ¢ Proc. L.M.S.,” ser. 2, vol. 3, pp. 86-90, and vol. 5, p. 420; the former
passage contains a discussion of the case of equal roots.
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0,1). Here the term “local average” means a function » constant in each sub-
) o)

mterval, and such that
1 1 -
J |p—r|dz and { L.
0 Jolp 7

d{l}

: o
tend to zero when the greatest of the sub-intervals does so. 1f = is limited, » may
. . P
be the actual average of p in each sub-interval.

The expansions discussed by Lrouviine and Sturm are those for which in the
present notation '
I.=0, GH = EK.
Thus
Ko (t,2) = {Ky (2, 0)+He (2, 0)} {Kyr (¢, 1)=Ge (¢, 1)},
and since
® (t, a’i)-—-w ((L‘, t) = Q¢ (.’ZJ, Z’)

=0 when Q=0,
the typical term may be written as a multiple of
Ky (@, 0)+Hg (,0) or Ky (x,1)=Gg¢ (x, 1)
indifferently, that is, it satisfies the equations (3) and is such that
when i = 0, K& = Hg,
and

when e =1, K® = —CGe.

20. Tt may also be proved that if f(x) is continuous and is equal to the sum ot the
former series (§ 18), the new expansion holds also. TFor if ¥, (t,«, R) is the special
function F (¢, R) in which H, G, E, L are zero, that is, the function denoted by
¥ (¢, 2, R) in § 15, we have, after some reduction,

Pt {Fl (t> &L, R)“F (t: &€, B’)Jl' .
= Jow m[H‘/’('xa 1) \/’(t’ 1)+G\/’(w> 0) v (t’ 0)+E{¢(cc, f)) N4 (t’ 0)—-(}5(90, 1) v (t: 1)}
+ L g (e, t) W (1, 0)—2v (2, 0) - (¢, 1)}J Ay, .. . . . (186)

which, even in the unfavourable case when K = 0, is finite when R > o, unless «, ¢ are
each equal to one of the limiting values 0, 1.
Now the difference of the two expansions for f(x) is

Lim == [/ (0) (F (¢, 2, R) =Ty (6, 2, )
R=>o 2em.o
that is,
1
Lim o= [ {F (0= (@)} 1F (6, R)=Fs (10, 1)
R> o 2umdo

for when the function to be expanded is constant, each of the expansions holds.
3012

(] ~
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In this expression the parts depending on F, I, are separately negligible by
Honsox’s theorem, except for values of ¢ between z+u, and for such values
F(t)= f(x) is small and F—TF, is finite. The whole is therefore arbitrarily small and,
in fact, zero; thus if the one expansion is valid for f(x), so is the other,* provided
that f(x) is continuous at a. (

21. Again, the error produced in one of the functions ¢, v, &, ¥ by neglecting or
altering o is relatively of the order of \7'% and thus it follows that if F, F, are
functions of the present type (§19) the same except for a change in & then
F(t,x, R)—F:(t,x, R) is limited. Similarly, then, the expansibility of f(x) is not
affected by a change in the value of o in the fundamental integral equations (3) so
long as “0'] da exists and f (x) is continuous at .

22. In order that the more general expansion may hold at the limits 0, 1, some
further conditions are necessary. It does not seem worth while to discuss these in
detail, but they are satisfied—

(1) When f(1) = f(0) = 0; and

(2) When f(1) =/f(0) and G=H =L=1, K=K =0, this being the case ot

a periodic function expanded in a series of periodic terms, since
O(1L,0)+y(L,0)0=2 . . . . . . . . . (17)

is the condition that functions ¢, ® may satisfy the equations (3) and have the
same values at both ends of the interval (0, 1).

On account of the periodicity there is no occasion to distinguish between the two
end-points or between these and the other points of the domain.

23. 1t is known that the Fourier constants «,, b, of a function f(x) are such as to
give the least possible value to '

™
[ {f (%)= 2w, cos nw—2b, sin nx}” da

and there is a similar theorem for the present expansions.
The condition that there may be functions £(x), & (x) satisfying (3) and fulfilling
the boundary conditions

K= (1) +GE(1) = 0(0), HE()+BE() =02(0) . . . . (18)
15
KW (1,0)+ Gy (1,0)—0, H (1, 0)+ 1 (1, 0)
=4 O,
R® (1,0)+Gg (1,0), He (1,0)-+14 (1,0)—0

¥ This result and that of §21 were first given for the usual LiouviLLE series hy J. MERCER (se¢ ¢ Roy.
Soc. Proc.,” A, vol. 84, pp. 5735, and “Phil. Trans.,” A, vol. 211, p. 147).
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which reduces to
Q=0. . . . . . . . . . . . (15
if 0 is a root of the equation

F—2Lo+(GH-EK) =0. . . . . . . . . (19)

When GH—-EK~—17 is positive, 0, 6,, the two roots of (19), are conjugate complex
quantities, and they may still be considered so when GH—EK =17 and 6,, 6, are
real and equal. Let & 5 be the two corresponding solutions of the fundamental
equations (3); these are also conjugate. Let coeflicients

Uty oy eeny Oy ooy Oy,
and

[)1, l)z, ceny ()", cery b,,b

be so determined that «,, b, are conjugate for all values of n, and that
1
1 . : . ,
[ ) s )t (o)) )= () =) - (20)

is the least possible. Here the different values of X satisfying the equation (15) and
the corresponding values of &, 5 are distinguished by suffixes. Thus the two factors
in the subject of integration are conjugate imaginaries and the integral is essentially

positive.
From (5), § 4, we have
1 » (1) =(1) 4(0)  Ei(0)
(A=2s) j ! & (x) ny () dae = -
op 7 (1) H,(1) 2 (0)  H,(0)
G(1) E(1) T o
= {1-— (}_}_I_—_—_E_Ig} from (18)
ne (1) H, (1) 6.6
= 0, since 6,0, = GH—EK.
Similarly,

v

1
v L ':') ‘fm (Ji) Nn (L') (l{L' = ()

for any unequal suffixes m, 7.
Hence it readily follows that (20) is a minimum when

-t (ML
, = [ = f (@) g (2)de + [ = & (@) n () da,
v 0 ") SO f)

b= [ L p@) @ de + [ L&) m(n) o,
0op 0p

while the general term in the expansion of f(z) (§ 19) is

% {wnfu ((L‘) + bn’?n (.’L’)}
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with these values of @,, b,, since it may be verified that when A = ),
£(t) n () {Kyr (1,0)+He (1,0)} = £(1) 5 (1) {o (t, 2)+(L—=61) ¢ (2, 1)},
@)y (1) {Ry- (1, 0)+ g (1,0)} = £(1) 5 (1) {0 (6, ) +(Li=0,) ¢ (e, 1)},

and therefore, by addition, o (£, z) is the same as

E(t)y(x)+E () n (1)

but for a constant factor, since 6;+6, = 2. (Compare  Proe. L.M.S., ser. 2, vol. 5
p. 473.)
24, The integral (20) may now be written

a form which shows that it decreases continually as m increases, and therefore tends

to a definite limit when m increases -without limit.

Also

"

—1 Yde— 2 a,b, ‘ gn( ) e () i,
p n=1 “

o 1L 6 () (o)
Dy \l{ & () () |

| 'p
= ‘llj( ) €, () dae xj

L 17”( ) LZ.’Lf
Jop p
a1l
=} j S (@) F () {8 () ma (1) + &0 (1) ma ()} v dlt,
JOJD /)TPt

which shows that the integral (20) is equal to

1 "1 el
‘ L (fa) da+ — j } Lf(f)t)j(?f) F (¢, x, R) da dt
Jop Qe JoJo p,
if R is so chosen that the path (R) encloses Ay, Az, ..oy A,
Since then ‘
~1
Lim J F(t,,R)dt = —
R-> o= JU

‘the limit to which (20) tends when R is indefinitely increased is the limit of

—-i—\l ~(j1——jt)21<(t e, Rydedt. . . . . . . (21)
e Jodo py
25. From this form it is possible to prove that the limit is zero.
First, let the domain (0, 1) be divided into intervals in each of which f(x) is
constant. Then when @, ¢ are in the same interval the contribution to the double
integral (21) is zevo. When , ¢ are in different intervals (a, @), (t, f2), fir— ft has a
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constant value so long as those intervals do not change, and the corresponding part
of the double integral is a constant mn]tiple of

Ty «t‘ ~

| Lo (6, 2) 1t il
Jag iy J(R) Pafr 82

In this expression take the terms of o (¢, x) separately. Taking the coefficient of K
we have

rry b
\// (.T/, O) \// (If, 1)0Zt dx
9 -toprpt
:_[lq/(w 0)= ¥ (), 0) —\ oy (i, O)JT][ ¥ (t, 1)— 1w (4 ‘1)+lr‘m/,(m 1)@1
)\ A0y )\ ) 0y L 7\ s }\‘m 7 ’ - )

which is at most of the order of R™*¥ (1, 0) so long as xy < ay =t, <#. In this way
1t appears that the triple integral is at most of the order of R7™"%, and the same result
can be deduced when ¢, <t =, < x, by putting o (z, t) in the place of w (¢, ). Since
the number of intervals is finite the whole expression (21) tends to zero when R is
increased indefinitely, and the integral (20) can be made as small as we please when
S () is a function of the special type, constant in each of a system of sub-intervals.

Now, let f(x) be unrestricted but real, ¢ (x) a real function of the special type, and
x () such an expression as

(tlgl ( ) + (71252 ( )+ cen + amfm (.’L').
We have

1 ~l ~1
j 1 | fo—xx|*dx < 2 ‘ 1 (fro—gpx) dx+2 ‘ 1 | pr—xx|® du,
0p JO o JOp

and it follows from §§ 5, 6 that the first of these terms can be made arbitrarily small,
if the integral of 1 (fir)* exists, by proper choice of the constant values of ¢ and of
P

the different sub-intervals. It has now also been proved that the second term can be
diminished indefinitely by a proper choice of @, @s, ... and by taking m great enough.

L
Hence j 1 | fr—yx|®dx, or (20), is also arbitrarily small.  Now (20) has its minimum

value for any given value of m when a, ..., @, have the values assigned in §23, and
this minimum value must tend to zero when m is increased without limit.
Hence the expansion of f(x), found in § 19, may be written in the form

»
%Z angn (."I?) + ])n’]n (.’lﬁ)}',
1
where &, y, have the meanings assigned in §23 and

!
= [ L@ (e e = [ 2 () ()

b, = ‘ f(a;) & () da + ( & (@) na () die.

l
p*
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These values of a,, b, are conjugate imaginaries, and are such as to give the least
possible value to

Jo o 1/ @)= (@)=t ()= (@) * e

that 1s, Lo

Y ! Jf({c)-—-%lla,@ (m)} {f(m)——%bnnn (.B)} da.

o p L

The value of this integral, and therefore also that of

( f [/‘(x)—%f%{ e (22) + bue (x)}T d

1 1
tend to zero as m s mcreased, if ‘ =(fx) dx exists.
. JO /)
26. The integral

tends to zero when R > o if @ ¢, and thus it follows that

o) _ & 1 &@n+bOmn)
1
Q =t A=A {O 5, () () e

To this expression the methods of Dr. J. MercEr (‘ Roy. Soc. Proc., A, vol. 84,
p. 573, and ¢ Phil. Trans.,” A, vol. 211, pp. 134 f.) may be applied, but his idea of the
bilateral limit cannot be used without some modification, since we have no reason
to believe that even at a point of discontinuity where f(a+0) exist their mean is
represented by the present expansions.
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